ClearMate™ blue logo

Explore our extensive library of scientific research, in-depth articles, training videos, and more.


  • Carbon monoxide (CO) is more attracted to hemoglobin than oxygen (O2).
  • Only small concentrations of CO are required to result in many attachment sites on hemoglobin being replaced by CO.
  • When exposure to CO is stopped, CO is slowly replaced by O2 from air, which is 21% O2. By increasing O2 concentration by 5 times to 100% O2, the rate of replacement of CO by O2 increases by 5 times that of room air.
  • By increasing the pressure of O2 by 3 times, as occurs in hyperbaric chamber, there are 3 times more O2 molecules in the same volume present and the rate of replacement of CO will increase again by 3 times.
  • This means that in the hyperbaric chamber the replacement of CO is 3 times as fast as just giving 100% O2.
  • Since giving 100% O2 replaces CO 5 times as fast as room air, the hyperbaric chamber results in CO elimination that is 3 x 5 = 15 times as fast as room air.
  • As the blood passes by the lung, CO diffuses into the lung.
  • Breathing 100% O2 causes the CO to diffuse into the lung 5 times as fast as breathing room air (21% O2)
  • Increasing the breathing rate by 3 times resting breathing, the lungs, and therefore the blood, are cleared of CO 3 times as fast.
  • This increased rate of elimination is on top of the 5 times increase in the rate of CO elimination from breathing pure O2.
  • As such, increasing ventilation by 3 times with ClearMate™ results in the elimination of CO by 3 x 5 = 15 times that on room air – same as the hyperbaric chamber.
  • The rates of elimination of CO were studied in dogs (Fisher et al., 1999) which were poisoned to 70% carboxyhemoglobin, which is near the fatal level for dogs and humans.
  • The animals were treated in the hyperbaric chamber as well as with ClearMate™.
  • The rates of elimination of CO were the same with ClearMate™ as with hyperbaric O2.
  • Humans were exposed to CO and then the rates of elimination of CO were examined while breathing O2 at different rates of ventilation (extents of breathing). (Takeuchi et al., 2000).
  • The rates of elimination of CO were found to increase with increased ventilation.
  • The optimal rate of elimination occurred at about 3 times resting breathing. This is about the breathing rate of healthy people after walking up one or two fights of stairs.
  • So, yes, it works in humans.
  • It is a common experience that people cannot hyperventilate for long as they become light headed and uncomfortable.
  • This is because hyperventilation also eliminates carbon dioxide from the blood.
  • Hyperventilation and loss of carbon dioxide is bad for the patient.
  • We have designed ClearMate™ to replace the carbon dioxide in exact proportion that it is being lost so the carbon dioxide level in the blood stays the same regardless of how hard the patient breathes.
  • There are no carbon dioxide sensors or flow meters or any other electronics.
  • ClearMate™ is a simple mechanical device that contains some standard valves that passively and automatically replaces exactly the amount of carbon dioxide that is lost, regardless of the extent and pattern of breathing.
  • Because the carbon dioxide replacement is locked in mechanically.
  • Patients who are breathing spontaneously on the ClearMate™ circuit will automatically hyperventilate by the following mechanism:
  • They get 100% O2. Contrary to what most people think, O2 is a respiratory stimulant, NOT a respiratory depressant. Those who need some convincing may review the following references: (Rucker et al., 2002; Iscoe & Fisher, 2005; Becker et al., 1995; Becker et al., 1996).
  • The ClearMate™ can be used to control the carbon dioxide in the blood. The user can use the ClearMate™ to slightly increase the carbon dioxide level which also stimulates ventilation.
  • The efficacy of treatment of CO poisoning depends very much on the time to treatment, especially for pregnant patients.
  • The hyperbaric chamber typically takes at least 2 hours to prepare.
  • ClearMate™ is portable and treatment can be started right at the time of rescue and continued in the ambulance.
  • Even if it takes only 20 minutes to pick up the patient and arrive at the hospital, in that 20 minutes the CO level would fall to half.
  • In an hour, the CO levels may be too low to detect. This is an advantage in places that don’t have hyperbaric chambers.
  • Treatment with ClearMate™ does not prevent or delay treatment with a hyperbaric chamber, if one is available.
  • As discussed, 100% O2 increases the CO elimination by 5 times.
  • With ClearMate™, this increase in elimination goes to 15 times.
  • One would think that giving people 100% O2 must provide more O2 to the brain than just giving them air.
  • However, when this is tested, it has been shown that administering O2 actually reduces the brain blood flow, and the net effect is less O2 delivered to the brain. (Rucker et al., 2002)
  • If the O2 is administered with ClearMate™, the carbon dioxide levels are maintained and the O2 delivery to the brain is maintained. (Rucker & Fisher, 2006)
  • Yes. Anesthetics are volatile hydrocarbons. With ClearMate™, anesthetics are quickly cleared and patients wake up quickly. (Katznelson et al., 2008;Katznelson et al., 2010;Katznelson et al., 2011)
  • Safer.
  • There is no foreseeable harm to increased ventilation at normal carbon dioxide in almost anyone – certainly when compared to risk of continued exposure of tissues to CO.
  • Complications from hyperbaric chambers can include ruptured ear drums, trauma to sinuses, seizures, strokes from decompression, and others
  • Hyperbaric chambers require large capital outlay for the equipment and infrastructure, and have large maintenance requirements.
  • ClearMate™ costs an order of magnitude less to purchase and requires no infrastructure to maintain. Its consumables are few and inexpensive.
  • The historical reason for this is given in a recent publication (Fisher et al., 2011). The abstract from this publication is reproduced below:
  • “At the start of the 20th century, CO poisoning was treated by administering a combination of CO2 and O2 (carbogen) to stimulate ventilation. This treatment was reported to be highly effective, even reversing the deep coma of severe CO poisoning before patients arrived at the hospital. The efficacy of carbogen in treating CO poisoning was initially attributed to the absorption of CO2; however, it was eventually realized that the increase in pulmonary ventilation was the predominant factor accelerating clearance of CO from the blood. The inhaled CO2 in the carbogen stimulated ventilation but prevented hypocapnia and the resulting reductions in cerebral blood flow. By then, however, carbogen treatment for CO poisoning had been abandoned in favour of hyperbaric O2. Now, a half-century later, there is accumulating evidence that hyperbaric O2 is not efficacious, most probably because of delays in initiating treatment. We now also know that increases in pulmonary ventilation with O2-enriched gas can clear CO from the blood as fast, or very nearly as fast, as hyperbaric O2. Compared with hyperbaric O2, the technology for accelerating pulmonary clearance of CO with hyperoxic gas is not only portable and inexpensive, but also may be far more effective because treatment can be initiated sooner. In addition, the technology can be distributed more widely, especially in developing countries where the prevalence of CO poisoning is highest. Finally, early pulmonary CO clearance does not delay or preclude any other treatment, including subsequent treatment with hyperbaric O2.”


Treat CO Victims as Effectively as Hyperbaric Oxygen, at Point of Care, without Delay.