A conceptual model for CO2-induced redistribution of cerebral blood flow with experimental confirmation using BOLD MRI

ARTICLE INFO

Article history:
Accepted 27 January 2014
Available online 5 February 2014

Keywords:
Cerebrovascular reactivity
Carbon dioxide
Steal
Reverse steal
Humans

ABSTRACT

Cerebrovascular reactivity (CVR) is the change in cerebral blood flow (CBF) in response to a change in a vasoactive stimulus. Paradoxical reductions in CBF in response to vasodilatory stimulation (‘steal’) are associated with vascular pathology. However, a pathophysiological interpretation of ‘steal’ requires a comprehensive conceptual model linking pathology and changes in blood flow. Herein, we extend a simple model explaining steal published in the late 1960s by incorporating concepts of CBF regulation from more recent studies to generate a comprehensive dynamic model. The main elements of the model are: (a) the relationship between changes in CBF and the arterial partial pressure of carbon dioxide (PaCO2) in healthy vascular regions is sigmoidal; (b) vascular regions vasodilate to compensate for decreased perfusion pressure, leading to (c) an encroachment on vasodilatory reserve and, reduced CVR; (d) a vasodilatory stimulus may increase CBF capacity above the flow capacity of major cerebral blood vessels; and (e) this limitation induces competitive intra-cerebral redistribution of flow from territories with low vasodilatory reserve to those with high reserve. We used CVR measurements generated by applying precise, computer-controlled changes in PaCO2 as the vasoactive stimulus, and measured blood oxygen level dependent (BOLD) MRI signals as high resolution surrogates of CBF to test predictions derived from this model. Subjects were 16 healthy adults and 16 patients with known cerebral steno-occlusive diseases. We observed regional sigmoidal PaCO2–BOLD response curves with a range of slopes; graded changes in PaCO2 resulted in redistributions of BOLD signal consistent with the known underlying vascular pathology and predictions of the model. We conclude that this model can be applied to provide a hemodynamic interpretation to BOLD signal changes in response to hypercapnia, and thereby aid in relating CVR maps to pathophysiological conditions.

© 2014 Elsevier Inc. All rights reserved.

INTRODUCTION

Dilation of cerebral vessels can result, paradoxically, in reductions of blood flow in certain regions. This phenomenon is associated with an enhanced risk of stroke (Kleiser and Widder, 1992; Markus and Cullinane, 2001; Molina et al., 1999; Ogasawara et al., 2002; Sasoh et al., 2003; Webster et al., 1995; Yonas et al., 1993) and dementia (Marshall and Lazar, 2011; Silvestrini et al., 2011; Zhao et al., 2009). What is not well understood is how these two observations are linked. If we could better elucidate the mechanism of vasodilator-induced redistributions of blood flow in the brain, we may better understand the pathophysiology of the diseases with which they are associated.

Herein, we begin with a conceptual model described in 1968 by Brawley (1968) and Symon (1968) and apply physiologic insights derived from some more recent pivotal studies to transform it into a dynamic model relating vasodilator-induced changes in regional cerebral blood flow (rCBF) to underlying vascular pathology (Appendix A). We then test the predictions of our model by applying precise automated changes in the partial pressure of CO2 in arterial blood (PaCO2), and observing the response of Blood Oxygen Level Dependent (BOLD) MRI signals as high resolution surrogates of rCBF.

A model of distribution of rCBF in response to cerebral vascular stimulation

The major vessels of the cerebral circulation generate about 30% of the total cerebrovascular resistance to flow, a greater resistance than similarly sized vessels supplying any other organ (Faraci and Heistad, 1990). Moreover, the major intracranial branches, far from being simple conduits, can add another 20% of flow resistance upstream from the pial...
vessels (Iadecola and Nedergaard, 2007). The net perfusion pressure for any regional vascular territory of the brain is, therefore, the systemic blood pressure minus any reductions in pressure due to flow resistance in the major extra-cranial vessels and vessels arising from the Circle of Willis.

The flow resistances in cerebral vascular territories can respond to upstream changes in vascular tone, or to the presence of fixed stenotic lesions, in the direction of maintaining rCBF (cerebral autoregulation) (Hill et al., 2006; Lucas et al., 2010) (Fig. 1). However, such compensatory reductions in vascular tone have physical limits. The difference between baseline vessel tone and this limit constitutes a vasodilatory reserve. Note that although we develop the model on the basis of regional vascular stenosis where “autoregulatory reserve” is appropriate, we prefer the term ‘vasodilatory reserve’ as it is more general and can also be applied to vessels that are plegic due to, for example, drugs, developmental vascular abnormalities, vascular disease, or trauma. Because of the high extra-cerebral arterial resistance and robust downstream vasodilatory reserve, the overall CBF capacity may exceed its potential supply (Brawley, 1968; Faraci and Heistad, 1990). Thus, a large vasodilatory stimulus would set up vascular beds, perfused in parallel by a common feed vessel, in competition for a limited flow of blood. Vessels with the greater vasodilatory reserve will increase their flow at the expense of those with the lesser reserve, a phenomenon termed ‘steal’ (Faraci and Heistad, 1990).

Fig. 2 represents a more detailed and extended model incorporating the physiologic principles derived from more recent studies (Appendix A). Vascular territories with full vasodilatory reserve respond to a range of PaCO2 with a large amplitude sigmoidal pattern of rCBF (Fig. 2 solid line). The flow through a branch with reduced vasodilatory reserve, if stimulated in isolation, would also have a sigmoidal pattern of response to the stimulus, but its resting tone would be closer to its maximal dilated state, and its response to a range of PaCO2 would be dampened, exhibiting a smaller range of response (from maximal constriction to maximum dilation), and gain (change of tone for a change of stimulus) (Appendix A).

But if the stimulus is applied to the entire vascular bed, the distribution of blood flow depends on the interaction of 3 conditions: 1) the resistance of the feed vessel, 2) the magnitude of the stimulus and 3) the relative regional vasodilatory reserve. Some vessels with reduced vascular reserve (blue dashed line) may be capable of reducing their resistance sufficiently to increase their blood flow at small increases in PaCO2; but with further increases in PaCO2 their share of the blood flow declines as it is redistributed to the vascular beds with the more robust vasodilation. Similarly, small decreases in PaCO2 may reduce flow to both healthy and compromised vessels, but this enhanced model predicts that larger reductions in PaCO2 will cause a redistribution of blood flow in favor of the compromised vessels, i.e., reverse steal.

The aim of this study was to test the following fundamental aspects of the enhanced model: (1) the relationship between PaCO2 and rCBF is sigmoidal; and (2) the net distribution of blood flow between vascular territories reflects (a) their respective regional vasodilatory reserve and (b) the magnitude of the stimulus. We tested these aspects of the model in healthy subjects and those with known cerebral vascular steno-occlusive disease by administering a range of PaCO2 between hypocapnia and hypercapnia, and monitoring BOLD MRI signals.

Methods

Review of literature for historical data to enhance the model

The brain vascular reactivity literature contains many combinations of stimulation methods, stimulation patterns, and surrogates of CBF. Because this heterogeneity made it impossible to select search terms that would result in a manageable number of relevant articles, we manually searched for studies in which: vasoconstrictor and vasodilator stimuli were applied (e.g., hyperventilation and rebreathing); subjects had regions with reduced vasodilatory reserve (e.g., due to vascular stenosis or hypotension); and rCBF was reported with adequate temporal and spatial resolution. Data from these studies were used to enhance various aspects of the basic model (Appendix A).
Human subjects

These studies conformed to the standards set by the latest revision of the Declaration of Helsinki. All studies were approved by the Research Ethics Board of the University Health Network and all subjects were competent and gave written informed consent.

Patients were referred to our medical imaging department by neurology or neurosurgery consultants for investigations of transient neurological symptoms suggestive of hemodynamic compromise. We recruited subjects with angiographically apparent large vessel cervical or cerebral artery steno-occlusive disease. Our healthy cohort was recruited by advertisement and word of mouth. The healthy subjects were of any age and either sex, and did not smoke or take any prescribed medication. All subjects were asked to refrain from caffeine, tobacco, or heavy exercise on the day of the examination. Their characteristics are detailed in Table 1.

Experimental protocol

Each subject participated in a protocol consisting of a reduction in PETCO₂ to 30 mm Hg for 30 s, induced by voluntary hyperventilation, followed by a linear progressive rise (‘ramp’) of PETCO₂ reaching 55 mm Hg over 4 min, and a return to baseline (see Fig. 5). Throughout, the end–tidal partial pressure of O₂ (PETO₂) was held constant at 100 mm Hg. We compared the changes in BOLD signal in response to two levels of change in PETCO₂ of two overlapping ranges, 40–45 mm Hg and 40–50 mm Hg, in the same subject.

Apparatus

Subjects were fitted with a face mask, and connected to a sequential gas delivery breathing circuit (Slessarev et al., 2007). The patterns of PETCO₂ and PETO₂ were programmed into the automated gas blender, which directed mixtures of O₂, CO₂, and N₂ into the breathing circuit according to prospective targeting algorithms (Slessarev et al., 2007). Tidal gas was sampled and analyzed for PETCO₂ and PETO₂ (RespirAct™, Thornhill Research Inc., Toronto, Canada) and recorded at 20 Hz. Our laboratory (Fierstra et al., 2011; Ito et al., 2008) and others (Brogan et al., 2004; Willie and Ainslie, 2011) have shown that end-inspiratory rebreathing, (also employed by the RespirAct™), results in PETCO₂ being equal to PaCO₂ within the range of measurement error. Therefore, in this paper, we use PaCO₂ when referring to the independent variable affecting brain blood flow, and PETCO₂ when referring to actual measurements made by the RespirAct™.

Magnetic resonance imaging was performed with a 3.0-Tesla HDx scanner using an 8-channel phased-array receiver coil (Signa; GE Healthcare, Milwaukee, Wisconsin) and consisted of BOLD acquisitions with echo planar imaging (EPI) gradient echo (TR/TE = 2000/30 ms, 3.75 × 3.75 × 5 mm voxels, field of view 24 × 24 cm, 30 slices, slice thickness 5 mm, matrix size 64 × 64, number of frames = 254, flip angle (FA) = 85°). The acquired MRI and PETCO₂ data were analyzed using AFNI software (National Institutes of Health, Bethesda, Maryland; http://afni.nimh.nih.gov/afni; Cox, 1996). To synchronize PETCO₂ and BOLD signal data, PETCO₂ data were time-shifted to the point of maximum correlation with the BOLD signal averaged over the whole brain. BOLD signal drift correction was made assuming a linear drift over time between the initial and final baselines.

A regression coefficient between PETCO₂ and the BOLD signal was calculated for each voxel. Fig. 3 shows regression coefficient maps for three subjects whose CVR maps are used in later figures, and illustrates the effects of thresholding on the CVR maps. CVR maps in the Results section are shown thresholded at 0.25, where all voxels with a regression coefficient between −0.25 and +0.25 were arbitrarily eliminated

Table 1

Characteristics of patients and healthy volunteers.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Sex</th>
<th>Age</th>
<th>Condition</th>
<th>Resting PETCO₂ (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>18</td>
<td>Bilateral moyamoya post right EC–IC bypass</td>
<td>37</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>28</td>
<td>Moyamoya</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>24</td>
<td>Steno-occlusive</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>47</td>
<td>Bilateral moyamoya with RICH</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>18</td>
<td>Bilateral moyamoya</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>66</td>
<td>Steno-occlusive</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>32</td>
<td>Bilateral moyamoya and bilateral ICA occlusion</td>
<td>36</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>30</td>
<td>Bilateral ICA occlusion with enlarged EC vessels</td>
<td>35</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>36</td>
<td>bilateral moyamoya</td>
<td>37</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>41</td>
<td>R moyamoya with bilateral ICA occlusion</td>
<td>35</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>21</td>
<td>Moyamoya</td>
<td>34</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>63</td>
<td>Bilateral MCA stenosis</td>
<td>35</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>18</td>
<td>Bilateral moyamoya</td>
<td>40</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>19</td>
<td>Moyamoya</td>
<td>38</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>13</td>
<td>Vasculitis ACTA2 mutation</td>
<td>35</td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>23</td>
<td>Moyamoya</td>
<td>37</td>
</tr>
<tr>
<td>17</td>
<td>M</td>
<td>49</td>
<td>Healthy</td>
<td>41</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>59</td>
<td>Healthy</td>
<td>36</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>33</td>
<td>Healthy</td>
<td>32</td>
</tr>
<tr>
<td>20</td>
<td>M</td>
<td>22</td>
<td>Healthy</td>
<td>38</td>
</tr>
<tr>
<td>21</td>
<td>M</td>
<td>45</td>
<td>Healthy</td>
<td>33</td>
</tr>
<tr>
<td>22</td>
<td>M</td>
<td>63</td>
<td>Healthy</td>
<td>40</td>
</tr>
<tr>
<td>23</td>
<td>M</td>
<td>73</td>
<td>Healthy</td>
<td>40</td>
</tr>
<tr>
<td>24</td>
<td>M</td>
<td>35</td>
<td>Healthy</td>
<td>37</td>
</tr>
<tr>
<td>25</td>
<td>F</td>
<td>28</td>
<td>Healthy</td>
<td>30</td>
</tr>
<tr>
<td>26</td>
<td>M</td>
<td>41</td>
<td>Healthy</td>
<td>35</td>
</tr>
<tr>
<td>27</td>
<td>M</td>
<td>46</td>
<td>Healthy</td>
<td>40</td>
</tr>
<tr>
<td>28</td>
<td>M</td>
<td>33</td>
<td>Healthy</td>
<td>39</td>
</tr>
<tr>
<td>29</td>
<td>M</td>
<td>25</td>
<td>Healthy</td>
<td>41</td>
</tr>
<tr>
<td>30</td>
<td>M</td>
<td>34</td>
<td>Healthy</td>
<td>40</td>
</tr>
<tr>
<td>31</td>
<td>M</td>
<td>41</td>
<td>Healthy</td>
<td>35</td>
</tr>
<tr>
<td>32</td>
<td>M</td>
<td>27</td>
<td>Healthy</td>
<td>41</td>
</tr>
</tbody>
</table>
as "noise". This threshold was chosen to provide the best compromise between sensitivity and specificity. When examining a large number of pathological scans this threshold eliminates voxels with little information (such as the skull borders) and leaves sufficient areas uncolored to allow anatomical orientation of the CVR maps (e.g. Spano et al., 2013). A linear, least-squares fitting of the BOLD signal data series to the PrCO2 data series was then performed voxel-by-voxel. The slope of the relation between the BOLD signal and the PrCO2 was color-coded to a spectrum of colors corresponding to the direction (positive or negative) and the magnitude of the correlation.

BOLD images were then volume registered and slice-time corrected, and co-registered to an axial 3-D T1-weighted Inversion-Recovery prepared Fast Spoiled Gradient-Echo (IR-FSPGR) volume (TI/TR/TE = 450/8/3 ms, voxel size 0.86 × 0.86 × 1.0 mm, matrix size 256 × 256, field of view 22 × 22 cm, slice thickness = 1 mm, FA = 15°) that was acquired at the same time (Saad et al., 2009). This method has been described in greater detail elsewhere (Fierstra et al., 2010). All images were normalized by mapping them into the same number of voxels enabling the representation of the fractional frequency of CVR values by constructing frequency distribution histograms (FDHs) using all CVR data except zero values.

Statistical analysis

We examined the effect on changes in BOLD signal in the 40–45 mm Hg and 40–50 mm Hg ranges of PrCO2 in both our healthy, and patient, cohorts. A two-way analysis of variance with factors CO2 range (40–45 vs. 40–50 mm Hg) and subject group (patient vs. healthy) was used to compare the effect of stimulus range. If differences were found, post hoc Bonferroni all-pair-wise tests were used to determine which groups differed significantly from one another.

Results

The effect of stimulus strength on CVR maps

Fig. 4A illustrates typical CVR results in a healthy individual (subject 25) for PrCO2 ranges 40–45 mm Hg and 40–50 mm Hg, and Fig. 4B illustrates typical CVR results in a patient (subject 8) with bilateral internal carotid artery (ICA) occlusion for PrCO2 ranges 40–45 mm Hg and 40–50 mm Hg. The frequency distribution of CVR with each stimulus shown in Figs. 4A, B can be explained with reference to the model as depicted in Fig. 2. Note that with the smaller stimulus there is a wider
Fig. 4. A) CVR maps obtained from a healthy control subject 25 at two PrCO2 ranges (40–45 and 40–50 mm Hg). Top: CVR maps for an axial slice showing the spatial distribution of CVR values colored according to the scale shown. The scale is in % BOLD change/mm Hg PrCO2 change. Bottom: Fractional frequency distribution histograms of the CVR values for the whole brain. B) CVR maps obtained from subject 8 with bilateral internal carotid artery occlusion at two PrCO2 ranges (40–45 and 40–50 mm Hg). Top: Magnetic resonance angiography (MRA). Middle: CVR maps for an axial slice showing the spatial distribution of CVR values colored according to the scale shown. The scale is in % BOLD change/mm Hg PrCO2 change. Bottom: Fractional frequency distribution histograms of the CVR values for the whole brain.
range of positive and negative voxels. The reduced number of positive voxels with the greater stimulus is a result of a reduction in the number of voxels which can retain a positive response (e.g. 28% with 40–50 mm Hg vs. 45% with 40–45 mm Hg in the patient frequency distributions). There would be a complementary effect on the negative voxels, reducing their range and increasing their number (e.g. from 20% to 30% in the patient frequency distributions). The smaller range of negative voxels with the greater stimulus also results from the peculiar method of calculating CVR: With additional linear increases in the stimulus from PrtCO₂ of 45 mm Hg to 50 mm Hg (in the denominator), the increases in flow to the voxels (i.e., BOLD signal) represented by the red line, are progressively reduced. Thus the wider distribution of the voxels with the lower stimulus results in greater average of both positive (e.g. 0.13 vs. 0.08%/mm Hg for the patient frequency distributions) and negative (e.g. 0.09 vs. 0.03%/mm Hg for the patient frequency distributions) CVR values. Note that despite the greater range of negative voxel values, the total number of negative voxels is similar with the 45–50 mm Hg and the 40–50 mm Hg stimuli (e.g. 20% vs. 30%, respectively for the patient frequency distributions). These patterns are typical of those in the healthy and patient cohorts presented in Table 2.

The mean (SD) CVR for all subjects resulting from the different stimulus ranges is presented in Table 2. The model (Fig. 2) indicates that the interaction of the various vascular beds alters the sigmoidal shape of the responses to hypercapnia. In an attempt to test whether an objective measure would differentiate between maps obtained under the various conditions, we compared the frequency distributions of the CVRs (Fig. 4) by calculating the descriptive characteristics of the distributions such as kurtosis (the degree of scatter of normally distributed data (Fig. 4) by calculating the descriptive characteristics of the distributions) CVR values. Note that despite the greater range of negative voxel values, the total number of negative voxels is similar with the 45–50 mm Hg and the 40–50 mm Hg stimuli (e.g. 20% vs. 30%, respectively for the patient frequency distributions). These patterns are typical of those in the healthy and patient cohorts presented in Table 2.

Continuous distributions of CBF over a hypocapnic to hypercapnic range in the presence of regional autoregulatory compromise

All of the CVR maps from the patient cohort showed regions of steal. We analyzed these changes over the continuum of PrtCO₂ from hypocapnia to hypercapnia. In a Supplementary video we show the dynamic changes in BOLD as a function of PrtCO₂ in one patient. The video shows a cursor following the PrtCO₂ stimulus on the left, and a 3D view of the BOLD MRI signal map response on the right. Fig. 5 shows a synopsis of the changes in BOLD MRI over 4 discreet intervals, illustrating the development of steal with all increases in PrtCO₂ and reverse steal (Robin Hood effect) (Lassen and Patlovgy, 1968) with all reductions in PrtCO₂.

In this patient, reducing PrtCO₂ from 40 mm Hg to 30 mm Hg produces a robust constriction in the healthy left brain territory and a decrease in the blood flow and BOLD signal (Fig. 5A). The CVR is color coded as before, but with the convention that its sign follows the BOLD change, so the CVR map is predominantly blue in the ‘normal’ vascular beds which vasoconstrict with reductions in PrtCO₂. However, a careful inspection of map A shows some yellow and orange coloration in the right MCA territory, the side of the lesion, indicating areas where blood flow increased due to reverse steal, as predicted by the model (Fig. 2). With a further increase in PrtCO₂ from 30 to 40 mm Hg there was a large increase in flow in the healthy left MCA region, but a lesser increase in the compromised right MCA region (Fig. 5B), indicating some residual vasodilatory reserve. Nevertheless, as predicted in Fig. 2, further hypercapnia to 50 mm Hg resulted in a greater stimulus to the healthy vessels, and in steal from the right middle cerebral artery (Fig. 5C). Finally, our conceptual model predicts that withdrawal of the vasodilatory stimulus will abolish the steal, allowing the restoration of rCBF, appearing as a positive change in flow (Fig. 5D).

Note that the pattern of red voxels in Fig. 5C is very similar to that of the dark blue voxels in Fig. 5D, indicating that these areas have a highly reactive vasculature with considerable reserves of vasodilation and vasoconstriction. However, the area which develops steal when PrtCO₂ is increased from 40 mm Hg to 50 mm Hg (Fig. 5C blue, right brain) does not seem to undergo the same degree of change on the return of PrtCO₂ to 40 mm Hg. We suggest the following explanation: During a generalized vasodilatation, blood flow is drawn away from the tissues with low responsiveness by the robust vasoconstriction in high response tissues. However, the restoration of vasoconstriction in the high response tissues does not actually force blood back into the low response tissues, but rather simply reduces their blood flow demand, thereby allowing the low response tissues to re-establish their flow. A time dependence for this re-establishment of flow results in a hysteresis of the dynamic response to PrtCO₂, which may account for the lesser degree of change when PrtCO₂ returns to 40 mm Hg. With our present state of knowledge, it is only safe to say that this figure demonstrates that steal and reverse steal occur in the same territory and represent the same pathophysiological phenomenon, both in the hypocapnic and hypercapnic ranges, as predicted by the conceptual model (Fig. 2).

Table 2

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Patients</th>
<th>Healthy volunteers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40–45 mm Hg</td>
<td>40–50 mm Hg</td>
</tr>
<tr>
<td>Mean</td>
<td>0.19 (0.16)</td>
<td>0.18 (0.1)</td>
</tr>
<tr>
<td>SD</td>
<td>1.02 (1.72)</td>
<td>0.64 (0.39)</td>
</tr>
<tr>
<td>Variance</td>
<td>3.8 (12.94)</td>
<td>0.74 (1.72)</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>1446.37 (2358.81)</td>
<td>1289.42 (2892.99)</td>
</tr>
<tr>
<td>Median</td>
<td>0.11 (0.11)</td>
<td>0.11 (0.08)</td>
</tr>
<tr>
<td>Mode</td>
<td>19.57 (85.56)</td>
<td>14.58 (28.08)</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.39 (32.38)</td>
<td>17.44 (27.98)</td>
</tr>
<tr>
<td>Mean + ve</td>
<td>0.37 (0.16)*</td>
<td>0.3 (0.1)*</td>
</tr>
<tr>
<td>Mean – ve</td>
<td>−0.22 (0.09)†</td>
<td>−0.16 (0.07)†</td>
</tr>
<tr>
<td>% – ve</td>
<td>31.33 (15.82)</td>
<td>28.84 (14.65)§</td>
</tr>
</tbody>
</table>

Changes in rCBF as a function of vasodilatory reserve

Fig. 6 presents examples of the BOLD signal as a function of a PrtCO₂ ramp change taken from predominantly red, yellow and blue regions of interest for patient 5 (shown in Fig. 5). This process yields BOLD signal vs. PrtCO₂ curves of the same shape as those demonstrated by Harper...
and Glass (1965) in dogs and Ringelstein et al. (1988) in humans (see Appendix A), and our conceptual model (Fig. 2).

Fig. 7A shows that the changes in the BOLD signal closely follow the changes in PETCO2 in a voxel with presumably excellent vasodilatory reserve in one patient. The range of PETCO2 appears to be substantially within the linear aspect of the curve. Fig. 7B shows the BOLD signal from a voxel that appears to simultaneously follow the PETCO2 in an opposite pattern of flow from that in Fig. 7A. This response pattern is interpreted as due to the vasculature passively following the flow changes in the active regions because they are themselves unable to actively change their tone. Whereas Fig. 5 illustrates the model principle of redistribution of blood flow between territories, Fig. 7 illustrates the same principle in single voxels, in this case one with no vasodilatory reserve.

The same pattern is seen with a larger region of interest (ROI) with uniform response in the voxels. For the general case, where larger ROIs are chosen, the CVR will be an average of the range of BOLD responses represented in Fig. 6, including those that invariably overlap CSF and white matter resulting in a lower average gray matter CVR (Fig. 8).

Fig. 5. CVR maps for an axial slice for different PETCO2 changes in an 18 year old male with moyamoya disease affecting the right MCA territory (to the left of the figure) (MRA, on left). The top chart shows the PETCO2 stimulus sequence (red) with the whole brain average BOLD signal changes (blue). Maps A to D represent changes in blood flow corresponding to changes in PETCO2 as indicated by the arrows in the figure. Changes in blood flow are color coded according to the reference scale on the right of the CVR maps: orange and red represent interval increases in blood flow and blue represents interval reductions.

Fig. 6. Fitted BOLD responses to PETCO2 in selected regions of interest (enclosed by the white circles) for patient 5 (shown in Fig. 5). A red region (top map) with a robust sigmoidal response (filled triangles and red line). A yellow region (middle map) with a moderate sigmoidal response (filled circles and orange line). A blue region (bottom map) with a poor response showing steal (squares and blue line). The inset (lower right) shows the latter response with an expanded BOLD scale to show the curvature in this response.
The main finding of this study is that a model of the distribution of CBF in response to hypercapnia described in 1968, enhanced by incorporating subsequently published observations, was successful in accounting for the pattern of CVR observed in healthy subjects, as well as in patients with a range of extracranial and intracranial steno-occlusive vascular disease. Overall, the data was consistent with the following aspects of the model. The observed smaller CVR values with the greater hypercapnic provocation in areas with positive CVR are the result of a sigmoid relationship between the PaCO2 and CBF in each isolated vascular region. The identification of reversing vascular response curves, where rCBF increases with small increases in PETCO2, and then reverses this relationship with higher PETCO2 (Fig. 6), confirms the predictions shown in Fig. 2.

The observation of reciprocal flow responses in territories with changes in stimulation direction (Figs. 5 and 7) suggests that the two flows are co-dependent, and therefore compete for the same total flow; otherwise their changes in flow would be in the same direction. The dependence of the reduction in flow in the compromised territory on the increase in flow in other territories is also supported by their simultaneous occurrence, despite delayed circulation (and arrival of a change in PaCO2) to the compromised territory (Poublanc et al., 2013). The extent of redistribution reflects the balance between the magnitude of the stimulus and the relative vasodilatory capacity of vascular regions perfused in parallel. The reduction in the range of positive and negative CVR values with the greater provocation is explained by reference to Fig. 4 and its associated text. The model may also help

Fig. 7. Voxel tracking of PrCO2. CVR maps are shown on the left with chosen voxels indicated by the cross hairs. The right side shows graphs of the chosen voxels BOLD signals (blue dots) in response to the changes in PrCO2 (red dots). In each case the BOLD signals track the PrCO2 stimulus, indicating that precise and accurate measurement of CVR requires accuracy and precision of the PaCO2 stimulus as well as the surrogate measure of CBF (reproduced from Fierstra et al., 2013).

Fig. 8. The average BOLD signal in a gray matter region of interest (ROI) during a ramp test protocol. Note that there is a continuous proportional change of % BOLD with PrCO2.
Loss of vascular reserve as that where autoregulatory vasodilation is of cerebrovascular reserve. Derdeyn et al. (2002) de
The relationship between CVR and the blood flow at rest
Our model is consistent with the recently proposed classifications of cerebrovascular reserve. Derdeyn et al. (2002) defined Stage I loss of vascular reserve as that where autoregulatory vasodilation is the predominant response to a progressive reduction in perfusion pressure; where the CBF lags behind in meeting brain oxygen demand the shortfall is met by small increases in oxygen extraction fraction (OEF). In Stage II, increases in OEF are insufficient to meet the brain metabolic demand (as measured by PET; Kuroda et al. (1993) described three patterns of CBF: (as measured by 133-Xe SPECT) at rest and in response to a vasodilatory stimulus (acetazolamide). Type 1 and Type 2 have normal blood flow at rest, and normal and reduced CVR respectively. Type 3 has both reduced CBF and CVR. For comparison of these models to ours with BOLD CVR we present 2 example cases from our patient cohort where, in addition to CVR, resting CBF was measured by arterial spin labeling (ASL) prior to CVR measures. Fig. 9A (subject 1) presents a patient with normal resting CBF and reduced CVR. This patient would be classed as Powers Stage I (OEF likely normal) and Kuroda Type 2. Fig. 9B presents a patient with reduced resting blood flow on the left and reduced CVR. This patient would be classed Powers Stage II and Kuroda Type 3. Of note, Fig. 9A emphasizes the added diagnostic value of a provocative stimulus, in this case CVR, above resting CBF or OEF. Advantages of our CVR data for examining the model
Our experimental data have a number of advantages for examining a CVR model. First, they were obtained from awake, non-sedated humans, including some with cerebrovascular disease; thereby addressing the issue of applicability of the model to clinical conditions. Second, the CVR calculations benefitted from the high time (2 s) and spatial (3.75 × 3.75 × 5 mm voxels) resolution of the BOLD signals, and the accuracy and the breath-by-breath time resolution of the stimulus (PaCO2), so that it was possible to generate a dataset of pseudo-continuous CVR values over a large range of PaCO2 (from hypo- to hypercapnia). Observing the changes in CVR over such a continuum of PaCO2 provides insight into the sequences of the changes that occur when only a single stimulus is administered, such as breath-hold, inhaled carbogen, and injection of acetazolamide.
As a final note, we point out that the PaCO2 stimuli in this study were implemented in a highly controlled and predictable manner using a custom gas blender and sequential gas delivery system described by Slessarev et al. (2007). However, similar patterns of stimulation can be implemented by end-tidal forcing (Beaudin et al., 2011) coached hyperventilation coupled with rebreathing (Battisti-Charbonney et al., 2011) or supplementation of inhaled gas with CO2 (Ringelstein et al., 1992) as reviewed in Fierstra et al. (2013).

Limitations
Sex difference in healthy and patient cohorts
The predominance of females (13/16) in the patient cohort reflects the greater incidence of moyamoya in females, i.e., 2:1 (Scott and Smith, 2009). Indeed, a count of the first 50 charts retrieved from our hospital records with a diagnosis of moyamoya yielded only 3 male names. In the healthy cohort the predominance of males represents the results of an unselective recruitment process. However, our most important observations are related to the redistribution of blood flow, which are within-subject changes independent of differences in cohorts. An exception is our observation of a greater fraction of voxels with negative CVR at the larger stimulus in the patient cohort. We report this finding as consistent with the predictions of our model, but cannot rule out sex as a factor.

Insensitivity of statistical methods to discriminate between groups
The lack of a significant difference in the kurtosis and skewness parameters of the CVR distributions between the healthy cohort and patients was somewhat surprising in that the distributions
appear to be different in these respects by eye. These parameters therefore lack sufficient sensitivity to be used clinically. We suggest that the explanation lies in the combination of the large number of voxels in the analysis for each subject, the small range of CVR values in the positive and negative ranges, and the considerable overlap of pathological and normal CVR values. Discrimination may be improved by taking into account other dimensions of these measurements, such as the spatial distribution of CVR and the time course of the BOLD signal change. However, in this paper we focus on a conceptual model delineating the mechanism of steal in an effort to inform the quest for methods of optimizing the sensitivity and specificity for identification of pathological neurovascular conditions.

BOLD as a surrogate for CBF

Tancredi and Hoge (2013) showed that, in the PrCO2 range of 40 to 50 mm Hg, CBF measured by arterial spin labeling (ASL) is a linear function of PrCO2. While ASL measurements are incompatible with our ramp stimulus protocol, we nevertheless must consider that the BOLD signal is affected by the cerebral metabolic rate of O2 consumption (CMRO2), change in blood volume, and by signal drift. Although we corrected for signal drift, a potential nonlinearity effect remains if there are changes in CMRO2 and cerebral blood volume (CBV). In addition, small negative changes in BOLD can occur in specific voxels bordering CSF that are not coupled to flow, but rather to changes in brain volume (Bright et al., 2014; Thomas et al., 2013). It is well known that the BOLD signal is not just dependent on blood flow. The scale of the blood flow is dependent on the resting deoxyhemoglobin level and changes in concentration, as well on the oxygen extraction. Nevertheless, we repeatedly observed that the BOLD signal seemed to follow that of expected blood flow in pathological as well as normal regions in our patients. Figs. 5 and 7 illustrate this by showing the repeated reciprocal changes of BOLD signal in pathological and healthy areas of the brain, consistent with the corresponding changes in blood flow predicted by our model. Furthermore, the timing of the changes in the pathological areas, rather than being delayed or dampened, is brisk and simultaneous with those in the healthy areas (Poublanc et al., 2013), also indicating that they are due to redistribution of blood flow passively following the changes in the briskly reacting vascular beds. The close tracking of the BOLD signal in both the healthy and pathological areas with PCO2 indicates that any nonlinear relationship between BOLD signal and CBF must be small compared to the effect of PCO2 on CBF itself.

Conclusion

The CVR maps in patients with known cerebral vascular pathology were consistent with the predictions of an enhanced version of a 1968 model to explain cerebral steal. This enhanced model may now, in turn, be invoked to provide a hemodynamic interpretation to CVR maps.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.neuroimage.2014.01.051.

Acknowledgments

We are grateful to the Toronto Western Hospital MRI technologists, in particular Eugen Hasny and Keith Ta for the help in acquiring the data and to Steve Iscoe for the editing assistance.

Disclosure/declaration of interest

JAF is the Chief Scientist and JD is a Senior Scientist at Thornhill Research Inc. (TRI), a spin-off company from the University Health Network that developed the RespirAct™. RespirAct™ is currently a non-commercial research tool assembled by TRI to enable CVR studies.

Appendix A

Background cerebrovascular physiology

The perfusion pressure for any regional vascular territory of the brain is the systemic blood pressure minus any reductions in pressure due to flow resistance in the major vessels arising from the Circle of Willis (assuming venous backpressure and intracranial pressure are not limiting). The latter flow resistances may be variable, due to changes in vascular tone, or fixed, due to steno-occlusive lesions. Autoregulation reduces the downstream vascular tone in an attempt to match flow to the metabolic requirements of the perfused tissues (Hill et al., 2006; Lucas et al., 2010). However, such a decrease in vascular tone has a physical limit, and the difference between this limit and the resting vessel tone constitutes a vascular vasodilatory reserve. Autoregulation can maintain normal resting flow despite as much as 70% blockage of the upstream feed vessel. However, when a generalized vasodilatory stimulus is applied, the blood flow to the post-stenotic vascular bed is challenged, often resulting in a paradoxical reduction in flow (steal) (Brawley, 1968; Mandell et al., 2008). The three conditions required for steal to occur are (a) two or more intra-cranial vascular beds with different vasodilator reserve capacities; (b) the vascular beds are perfused in parallel from a common arterial blood supply; and (c) the flow capacity of this supply is less than that of the vascular beds.

In healthy brain, most (but not all; Mandell et al., 2008) vascular beds will increase their flows, and any effects of the limitation of inflow may not be apparent. However, the major extracranial vessels provide at least 30% of the total resistance to flow—much more than similarly sized vessels elsewhere in the body (Faraci and Heistad, 1990). The increase in flow induced by a strong vasodilatory stimulus may exceed the supply capacity resulting in a reduction in pial perfusion pressures (Brawley, 1968) and establishing conditions for a competition for perfusion between intracranial vascular territories perfused in parallel (Symon, 1968).

In this section, we draw on previously published data to further develop the concepts of redistribution of cerebral blood flow (CBF) and extend this model to cover a wide range of autoregulatory encroachments in disparate vascular beds, strengths of vasodilatory stimuli, and baseline conditions.

Harper and Glass (1965) examined the CBF response to CO2 as a function of perfusion pressure in dogs. As perfusion pressure was reduced from normal, the change in CBF in response to a given change in PCO2 was less (Figs. 1A, B). Indeed, below a threshold perfusion pressure, CBF was unresponsive to PCO2 (Fig. 1C). At this lowest pressure, autoregulatory-mediated vasodilation was maximal. Vessels could neither vasodilate further in response to hypercapnia, nor overcome autoregulation and constrict in response to hypocapnia (Brawley, 1968). We re-analyzed these data to illustrate the relationship between autoregulatory reserve, and responses to changes in PCO2. First, we re-scaled all three responses presented in the original figures from Harper and Glass (1965), and plotted them on the same graph (Fig. 1D). This rearrangement shows that the vascular tone at resting PaCO2 is in the mid-range, retaining some degree of constrictor and dilator reserve. Second, assuming that at maximal PaCO2, the resistance vessels are all maximally dilated regardless of their perfusion pressures (Symon, 1969), we re-plotted the data as ‘percent maximal dilation’ vs. PaCO2 (Fig. 1E).

1 We develop the model on the basis of regional vascular stenosis where “autoregulatory reserve” is appropriate. However, we prefer ‘vasodilatory reserve’ as it is more general as it can also be applied to vessels that are plegic due to, for example, drugs, developmental vascular abnormalities, vascular disease, or trauma.
The analysis of these data allows the extension of the original ‘cerebral steal’ description to include the following enhancements. First, the relationship between PaCO2 and CBF is sigmoidal. Second, encroachment on the vasodilatory reserve by autoregulatory-induced vasodilation reduces the reactivity to CO2, as indicated by a reduction in the slope of the linear part of the sigmoid. Third, when autoregulation is exhausted, there is no further response to hypercapnia. Fourth, the midpoint of the sigmoid curve is approximately at the resting PCO2. Finally, we note that hypocapnia incompletely reverses autoregulatory vasodilation.

Next, we examined whether these relations observed in the dogs of Harper and Glass (1965) occur in humans. Ringelstein et al. (1988) examined patients with unilateral carotid artery stenosis, a condition where compromised and uncompromised regions of the brain can be identified, and where both regions are perfused in parallel by common feed vessels. Fig. 2 is modified from their data and graphs. We graphed the changes in blood flow as a function of PaCO2 in patients with various encroachments on their autoregulatory reserve, on the same axes as in Fig. 1D. The reduced vascular response to changes in PCO2 in the presence of an upstream stenosis (Fig. 2C) compared to the response of the normal side (Fig. 2A) is similar to that observed by Harper and Glass (1965) in the whole brain.

Appendix A. Fig. 1. Results redrawn from experiments in dogs by Harper and Glass (1965; Figs. A, B, and C) showing the effects of reducing perfusion pressure on the CBF response to CO2. A) Normotensive; B) Hypotensive; C) Extreme hypotension; D) An overlay of the fitted responses in A and B drawn to the same scale; E) The fitted responses presented as the % of maximum vasodilation.
A conceptual model

Fig. 3 summarizes the model. At rest, vessels perfused via the stenosed branch are dilated to supply their tissues’ metabolic requirements, and blood flow may appear normal. However, with a progressively increasing vasodilatory stimulus, the dilation may reach its limit, and blood flow may decline as the limited blood supply is diverted to the vessel with dilatory reserve (Fig. 3B).

This scenario can be applied to predict the regional cerebral blood flow (rCBF) response to a range of changes in PaCO2 as shown in Fig. 4. Note that Fig. 4 illustrates the response to CO2 in a branch with reduced vasodilatory reserve when stimulated in isolation (dashed line) and during a global stimulus (dotted line). The vessel with the reduced reserve may not increase its flow, or may even reduce its flow in response to the global hypercapnic stimulus, depending on the magnitude of the stimulus, the vasodilatory reserve of the vessels in the stenosed branch as well as the extent of the response of the vessels in the normal branch.
Summary

This model was developed from the early concepts of steal by incorporating the experimental results obtained in the ensuing years to produce the dynamic model we propose here, which has the following defining characteristics:

(a) The relation between flow and vasodilatory stimulus for each vascular territory is sigmoidal when stimulated in isolation, with a midpoint close to resting PaCO₂.

(b) Each vascular territory therefore has a vasodilatory reserve, which autoregulation may draw upon to ensure an adequate blood flow.

(c) Vascular territories perfused in parallel from a single source compete for flow during a global stimulus because the source flow is limited.

As a result of these characteristics, vascular territories may be able to maintain an adequate blood flow under resting conditions by encroaching on their vasodilatory reserve, and even respond to moderate metabolic demands. However, when stressed by an increased demand or a global vasodilatory stimulus such territories are unable to compete for the limited flow supply and have their flow stolen by their neighbors with excess vasodilatory reserve. Thus, to identify such vascular territories an adequate global stimulus is needed.

References

