Development of White Matter Hyperintensity Is Preceded by Reduced Cerebrovascular Reactivity

Kevin Sam, PhD,1,2 Adrian P. Crawley, PhD,2,3,4 John Conklin, MD, MSc,2 Julien Poublianc, MSc,2 Olivia Sobczyk, MSc,2,4 Daniel M. Mandell, MD, PhD,2,4 Lakshmikumar Venkatraghavan, MD,5 James Duffin, PhD,1,5 Joseph A. Fisher, MD,1,4,5 Sandra E. Black, MD,4,6 and David J. Mikulis, MD2,3,4

Objective: White matter hyperintensities (WMH) observed on neuroimaging of elderly individuals are associated with cognitive decline and disability. However, the pathogenesis of WMH remains poorly understood. We observed that regions of reduced cerebrovascular reactivity (CVR) in the white matter of young individuals correspond to the regions most susceptible to WMH in the elderly. This finding prompted us to consider that reduced CVR may play a role in the pathogenesis of WMH. We hypothesized that reduced CVR precedes development of WMH.

Methods: We examined 45 subjects (age range 55–91 years; 25 males) with moderate–severe WMH, and measured their baseline CVR using the blood oxygen level–dependent magnetic resonance imaging signal response to a standardized step change in the end-tidal partial pressure of carbon dioxide. Diffusion tensor imaging and transverse relaxation time (T2) relaxometry were performed at baseline and 1-year follow-up, with automated coregistration between time points. Baseline fractional anisotropy (FA), mean diffusivity (MD), T2, and CVR were measured in areas that progressed from normal-appearing white matter (NAWM) to WMH over the 1-year period.

Results: CVR and FA values in baseline NAWM that progressed to WMH were lower by mean (standard deviation) 26.5% (23.2%) and 11.0% (7.2%), respectively, compared to the contralateral homologous NAWM that did not progress (p < 0.001). T2 and MD were higher by 8.7% (7.9%) and 17.0% (8.5%), respectively, compared to the contralateral homologous NAWM (p < 0.001).

Interpretation: Areas of reduced CVR precede the progression from NAWM to WMH, suggesting that hemodynamic impairment may contribute to the pathogenesis and progression of age-related white matter disease.

ANN NEUROL 2016;80:277–285

In 1986, Hachinski et al1 introduced the term leukoaraiosis ("leuko" = white, "araios" = rarefied) to describe the patchy areas of high transverse relaxation time (T2)-weighted magnetic resonance imaging (MRI) signals frequently observed in elderly individuals. However, the term leukoaraiosis is purely descriptive, intended only to describe these imaging findings without connotation of a specific pathophysiological process. By contrast, the STRIVE (STandards for ReportIng Vascular changes on nEuroimaging) consensus statement advocates the term “white matter hyperintensities of presumed vascular origin” if a vascular etiology is suspected.2 Although these white matter hyperintensities (WMH) were once thought to represent benign age-related changes, they have now been shown to correlate strongly with cognitive impairment,3 dementia,4,5 and disability.6,7 Given the high prevalence of WMH in the elderly,8,9 it is important to understand its pathogenesis to propose and evaluate strategies for prevention and treatment.

Cerebrovascular reactivity (CVR) is defined as the change in flow in response to a vasoactive stimulus, and
is a measure of the ability of the cerebral vasculature to control vascular resistance. CVR measurements have the potential to reveal areas of hemodynamic insufficiency, where redistribution of flow occurs during a vasodilatory stimulus from areas of exhausted vasodilatory capacity to areas with a robust vasodilatory response. A quantitative approach to measuring CVR has been validated for clinical evaluation that uses the blood oxygen level–dependent (BOLD) MRI response to an accurately controlled hypercapnic stimulus. Two important findings suggest that chronic hemodynamic insufficiency may be implicated in the pathogenesis of WMH, specifically: (1) the mean CVR of WMH is diminished and is approximately half of that found in normal-appearing white matter (NAWM); and (2) the CVR of NAWM in young healthy individuals is diminished in a pattern that spatially corresponds to predilection maps of WMH in the elderly. It is unknown whether WMH causes reduced CVR due to decreased metabolic demand or whether reductions in CVR lead to the development of WMH. This study examined the possible relationship between diminished CVR and the progression from NAWM to WMH.

In addition to CVR, diffusion tensor imaging (DTI) has been shown to be sensitive to subtle white matter structural changes in NAWM. A serial DTI and quantitative T2 MRI study followed subjects with age-related WMH over 16 weeks and found abnormally low fractional anisotropy (FA), high mean diffusivity (MD), and high T2 values in de novo WMH. Another study that prospectively investigated WMH progression over 3.5 years found lower baseline FA and higher baseline MD in NAWM that progressed to WMH. Whether reduced CVR precedes the progression of NAWM to WMH is not known. To answer this question, we examined 45 subjects with age-related WMH using 2 multiparametric MRI scans 1 year apart to evaluate the temporal evolution of structural and hemodynamic parameters of the white matter. We hypothesize that NAWM that progresses to WMH will demonstrate reduced baseline CVR and alterations in structural MRI parameters when compared to NAWM that remains stable over time.

Patients and Methods

Subject Recruitment and Assessment

This study was conducted at the Toronto Western Hospital (TWH) and Sunnybrook Health Sciences Centre (SHSC). Subjects were recruited through outpatient neurology clinics at both sites. Subjects were initially referred by their family physicians to neurology clinics because of syncopal episodes, transient paresthesia, gait disturbances, headaches, memory impairment, or cognitive decline. Magnetic resonance angiogram/computed tomographic angiography of the head and neck as well as T2-weighted fluid-attenuated inversion recovery (FLAIR) images were screened by 2 experienced neuroradiologists (D.M.M. and D.J.M), and subjects were enrolled in the study based on the following criteria: (1) imaging evidence of acute neurological event on diffusion-weighted imaging in the white matter must be >3 months from presentation prior to study enrolment; (2) older than 50 years; (3) MRI white matter disease burden/Fazekas grade 2; (4) no evidence of hemodynamically significant (ie, >50%) internal carotid artery or vertebral artery stenosis; (5) no history of arterial dissection; (6) no prior large cortical infarct >2cm or cavitary white matter lesion >2cm; (7) no history or clinical evidence of pulmonary or cardioembolic disease; (8) no contraindication to 3T MRI; and (9) must not be on medications known to alter CVR, including nitrates and calcium channel blockers.

Forty-five elderly adults (age range = 50–91 years; 25 males) were recruited and provided written informed consent to procedures approved by the respective institutional ethics review boards in accordance with the 1964 Declaration of Helsinki (see Table 1 for patient characteristics).

Image Acquisition

Subjects underwent MRI scans on a 3T GE system (Signa HDx platform; GE Healthcare, Milwaukee, WI) at TWH and 3T Philips Achieva system (Philips Medical Systems, Best, the Netherlands) at SHSC with an 8-channel phased array head coil. Subjects were asked to refrain from heavy exercise and
drinking caffeine on the day of each scan. The imaging acquisition parameters are listed from SHSC to TWH as follows: T1-weighted 3-dimensional spoiled gradient-echo sequence (slice thickness = 1.2 to 1.5mm; no interslice gap; matrix size = 256 × 256; field of view = 22 × 22cm; flip angle = 8 to 20°; echo time [TE] = 2.3 to 3 milliseconds; repetition time [TR] = 7.8 to 9.5 milliseconds), BOLD functional MRI using a T2*-weighted echo-planar imaging gradient-echo sequence (slice thickness = 3.0 to 5.0mm; field of view = 24 × 24cm; matrix size = 64 × 64; flip angle = 85 to 90°; TE = 30 milliseconds; TR = 2,000 milliseconds), conventional FLAIR images (slice thickness = 3mm; 36 to 52 slices per volume; no interslice gap; matrix size = 256 × 224 to 240 × 240; field of view = 22 × 22cm; flip angle = 90°; TE = 125 to 165 milliseconds; TR = 9,000 to 9,145 milliseconds; inversion time = 2,200 to 2,800 milliseconds); DTI with an echo-planar imaging spin-echo XL sequence (slice thickness = 3mm; no interslice gap; matrix size = 128 × 128 to 256 × 209; field of view = 22 × 22cm; flip angle = 90°; TE = 11.1/90 to 11/102 milliseconds; TR = 2,500 to 7,200 milliseconds), and multiecho T2 mapping using a fast spin-echo-XL sequence (slice thickness = 3mm; no interslice gap; matrix size = 256 × 192; field of view = 230 × 184 to 22 × 22cm; TE = 13, 26, 39, 52, 65, 78, 91, 104, 117, 130, 143, 156 milliseconds; TR = 5,000 to 6,000 milliseconds).

Vasodilatory Stimulus (Gas Manipulation, End-Tidal pCO2, and pO2 Manipulation)
Control of the end-tidal partial pressure of CO2 (PETCO2) and O2 (PETO2) was achieved using an automated gas blender that adjusts gas composition and flow to a sequential gas delivery breathing circuit (RespirAct; Thorntill Research, Toronto, Canada). This allows PETCO2 and PETO2 to be controlled independent of the subject’s ventilation and breathing pattern.20,21 The system operation and implementation of PETCO2 and PETO2 sequences used during the analysis of BOLD CVR are described in detail elsewhere.22–24 The vasodilatory stimulus used in this study was as follows: a baseline PETCO2 of 40mmHg for 60 seconds (normocapnia), followed by an abrupt hypercapnic step change to PETCO2 of 50mmHg for 90 seconds, then a return to baseline for 90 seconds, followed by a second abrupt hypercapnic step change for 120 seconds, with a final return to baseline.25 Normoxia (PETO2 = ~110mmHg) was maintained throughout.

Image Reconstruction
The acquired BOLD MRI and PETCO2 data were imported to AFNI for analysis. BOLD images were slice time-corrected, volume-registered, and aligned to axial anatomical T1-weighted images. The CVR maps were then constructed by first time-shifting the acquired PETCO2 data to the point of maximum correlation with the whole brain average BOLD signal using MATLAB software (MathWorks, Natick, MA), to compensate for the transit time delay from pulmonary to cerebral circulation. Then, a voxel-by-voxel linear least-squares fit of the BOLD signal time series to the PETCO2 data (regressor) was performed and the slope of the line of best fit was taken as CVR.

Quantitative T2 maps were obtained using multiecho fast spin-echo images. T2 maps were calculated in AFNI using methods previously described.27 To calculate FA and MD, maps, diffusion-weighted images were imported into FSL.4,18,28 Preprocessing included eddy current and motion artifact correction using FMRIB’s Diffusion Toolbox (FDT).29 Next, individual brain masks were created using FSL’s Brain Extraction Tool.30 The preprocessed images were fit with a diffusion tensor model using DTIFIT in FDT.28

CVR Measurement
CVR was assessed by measuring the change in BOLD MRI signal in response to changes in the end-tidal (ie, end-expiratory) PETCO2, and defined as ΔBOLD signal (%)/ΔPETCO2 (mmHg). A color scale ranging from blue to red was used to illustrate the magnitude of CVR, with negative CVR values interpreted as “stale physiology” shown as shades of blue, and positive CVR values are shown as shades of yellow, orange, and red (Fig 1).

Generating Regions of Interest of NAWM and WMH
Segmentation of WMH was performed using the Lesion Explorer processing pipeline based on FLAIR, proton density (PD), and T2-weighted images (available for download at http://sabre.brainlab.ca).31,32 These images were reviewed to identify newly appearing lesions. Lesion Explorer was used to obtain measures of supratentorial total intracranial volume (total brain tissue and cerebrospinal fluid). A region of interest (ROI) encompassing all newly developed lesions was manually traced using AFNI.26 T1-weighted anatomical images were segmented into cerebrospinal fluid, gray matter, and white matter using SPM8 (Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College, London, UK). Gray matter and white matter volumes were normalized for total intracranial volume. A diamond-shaped structuring element was used to erode the white matter segmentation in 5 iterations at the resolution of the T1-weighted image to prevent partial volume effects. WMH were subtracted after erosion to give rise to a NAWM mask.

Spatial Factor Corrected Regional Measures
White matter CVR is spatially heterogeneous in healthy subjects,13 so it is possible that observed differences between regions of white matter in our subjects are due to this normal spatial variation rather than tissue pathology. For example, WMH tend to develop in the periventricular white matter and CVR may also be intrinsically lower in these areas. Therefore, CVR differences between NAWM and de novo WMH may produce false-positive results. To account for spatial location,
T1-weighted images were transformed into Montreal Neurological Institute space using SPM8. The transformation matrix was applied to all other MRI metrics, transforming these maps to a standard space but retaining the native structure. AFNI was then used to identify areas of contralateral homologous NAWM corresponding to each area of WMH (Fig 2). This enables direct comparison between areas of de novo WMH and contralateral homologous NAWM, eliminating spatial location as a potential confounding factor.

Statistical Analyses

Statistical analysis was performed with SPSS 21.0 (IBM, Armonk, NY). The relationships for each MRI metric between different tissue types were compared in the following 4 ROIs: (1) WMH at baseline, (2) NAWM at baseline without progression to WMH, (3) NAWM at baseline with progression to WMH, and (4) de novo WMH on follow-up scans. For this within-subject repeated measures design, CVR was compared between the 4 ROIs listed above using a Friedman test with Dunn correction for multiple comparisons. For DTI and quantitative T2 parameters, comparisons between the 4 ROIs were performed using a repeated measures 1-way analysis of variance with FA, MD, and T2 as dependent variables and the various regions as the matched-pairs independent variable. Mauchly test was used to detect significant departures from sphericity, and the degrees of freedom were corrected using the Greenhouse–Geisser method. Results of post hoc tests were considered significant if the Bonferroni-corrected probability value was less than 0.05/(6 comparisons) = 0.008. Partial η^2 effect sizes were calculated for significant results between NAWM at baseline versus without progression to WMH.

When accounting for spatial location by comparing NAWM that progressed to WMH versus contralateral homologous NAWM that did not progress (see Fig 2E), significance was tested with Wilcoxon matched-pairs signed ranks test for CVR measurements and 2-tailed paired t tests for DTI and T2 measurements. For these paired tests, statistical significance was assessed with $\alpha = 0.01$.

Results

The 45 subjects (age range = 50–91 years, mean age = 73.1 years; 25 males) had a mean (standard deviation [SD]) WMH volume of 26.7 (23.5) ml at baseline, and mean WMH volume of 30.0 (25.1) ml at 1-year...
follow-up, yielding a WMH progression rate of 0.66 (0.60) ml/year.

The mean (SD) for each MRI parameter in each ROI is summarized in Table 2. NAWM regions that progressed to WMH were compared to NAWM regions that did not progress to WMH over the 1-year period, and the former demonstrated reduced CVR and FA, and increased MD and T2 (all \(p < 0.001 \)).

The statistical significance of these findings remained when using the spatially corrected regions as demonstrated in Figure 2. The results of these comparisons are presented in Table 3. In this analysis, regions with bilateral disease were excluded and only WMH with contralateral NAWM were examined. Out of all white matter, the percentage of WMH that had NAWM on the contralateral side that could be used for comparison was 14.4% (8.7%). CVR and FA in NAWM that progressed to WMH were lower than in contralateral homologous NAWM that did not progress by 26.5% (23.2%) and 11.0% (7.5%), respectively, whereas MD and T2 were higher by 17.0% (8.5%) and 8.7% (7.9%), respectively (all \(p < 0.001 \); Fig 3). A post hoc power calculation given the observed effect size between the CVR of NAWM that progressed to WMH and contralateral NAWM was \(\eta^2 = 0.275 \) (large effect size).

When comparing measurements at baseline to 1-year follow-up in NAWM that progressed to WMH, CVR and FA did not change over time; MD and T2 increased on follow-up (both \(p < 0.01 \)).

Discussion

This is the first longitudinal study to investigate the relationship between impaired cerebrovascular reactivity and the evolution of WMH. We have demonstrated that regions of NAWM that progress to WMH over time have a lower baseline CVR compared to NAWM that remains stable. We also found that these regions display subtle microstructural alterations in baseline diffusion MRI parameters, with increased MD and decreased FA. These latter measures suggest that there is a loss of tissue integrity before visible changes on conventional T1- or T2-weighted imaging. Such alterations are consistent with previous reports of abnormal diffusivity in areas of hemodynamic impairment in the NAWM of patients with intracranial\(^{15} \) and extracranial steno-occlusive disease.\(^{16} \) Our findings therefore suggest that areas of CVR
Impairment are more prone to developing WMH, and we hypothesize that this link is due to a chronic unsuccessful competition for blood flow between regions of differing CVR.10

Our DTI measures are consistent with recent imaging studies that also examined the evolution of WMH and showed that reduced FA and increased MD precede progression from NAWM to WMH. 18,33 We also found prolonged T2 values in NAWM that progressed to WMH, approaching those of pre-existing WMH, although such differences were not visible on T2-weighted or PD images from baseline scans. These DTI and T2 findings indicate that pathological changes in NAWM occur before becoming visible on imaging. Prolonged T2 in NAWM may indicate signs of diffuse demyelination,34 astrogliosis, and vasogenic edema.35

Our results are also consistent with animal models demonstrating cerebrovascular dysfunction months before the first histological evidence of white matter injury, including oxidative stress, blood–brain barrier disruption, oligodendrocyte loss, and glial activation.36,37 Microglial activation and WMH have been shown to be spatially concordant in rat models of chronic hypoperfusion.38,39 In this model, one hypothesized mechanism for WMH pathogenesis is that microglial proteases may contribute to the reduction of basement membrane components and blood–brain barrier breakdown,40 which results in perivascular edema and leads to the development of WMH through the action of extravasated serum factors.41

<table>
<thead>
<tr>
<th>Metric</th>
<th>WMH at Baseline</th>
<th>NAWM at Baseline without Progression to WMH</th>
<th>NAWM with Progression to WMH Measurements at Baseline</th>
<th>NAWM with Progression to WMH Measurements at Follow-up, De Novo WMH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVR, %BOLD/mmHg</td>
<td>0.05 (0.05)a</td>
<td>0.12 (0.04)b</td>
<td>0.05 (0.04)a</td>
<td>0.05 (0.05)a</td>
</tr>
<tr>
<td>FA, unitless</td>
<td>0.28 (0.06)a</td>
<td>0.47 (0.05)b</td>
<td>0.31 (0.06)a</td>
<td>0.30 (0.06)a</td>
</tr>
<tr>
<td>MD, × 10⁻³ mm²/s</td>
<td>1.36 (0.11)a</td>
<td>0.85 (0.04)b</td>
<td>1.00 (0.11)a,b</td>
<td>1.08 (0.11)a,b,c</td>
</tr>
<tr>
<td>T2, ms</td>
<td>133.7 (14.4)a</td>
<td>85.3 (4.8)b</td>
<td>93.8 (9.6)b,a</td>
<td>111.7 (12.2)a,b,c</td>
</tr>
</tbody>
</table>

All comparisons with FA, MD, and T2 were made using repeated measures 1-way analysis of variance with a Bonferroni correction for multiple comparisons. CVR comparisons used Friedman test with Dunn post hoc correction. Values are expressed as mean (standard deviation).

*a p < 0.05 for comparisons against NAWM at baseline without progression to WMH.

*b p < 0.01 for comparisons against WMH at baseline.

*c p < 0.01 between time points, NAWM with progression to WMH.

BOLD = blood oxygen level-dependent; CVR = cerebrovascular reactivity; FA = fractional anisotropy; MD = mean diffusivity; NAWM = normal-appearing white matter; WMH = white matter hyperintensities.

<table>
<thead>
<tr>
<th>Metric</th>
<th>NAWM at Baseline with Progression to WMHb</th>
<th>Contralateral Homologous NAWM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVR, %BOLD/mmHg</td>
<td>0.05 (0.04)</td>
<td>0.08 (0.05)a</td>
</tr>
<tr>
<td>FA, unitless</td>
<td>0.2 (0.04)</td>
<td>0.33 (0.04)a</td>
</tr>
<tr>
<td>MD, × 10⁻³ mm²/s</td>
<td>1.25 (0.11)</td>
<td>1.09 (0.12)a</td>
</tr>
<tr>
<td>T2, ms</td>
<td>109.3 (12.1)</td>
<td>100.3 (9.64)a</td>
</tr>
</tbody>
</table>

Values are expressed as mean (standard deviation).

*a Significance against NAWM at baseline with progression to WMH (p < 0.01) using a 2-way paired Student t test.

*b Please note that this region of interest has been corrected for the spatial location confound and differs from measures found in Table 2.

BOLD = blood oxygen level-dependent; CVR = cerebrovascular reactivity; FA = fractional anisotropy; MD = mean diffusivity; NAWM = normal-appearing white matter; WMH = white matter hyperintensities.
It is possible that the reduced CVR in smaller time found hallmarks of acute infarction in de novo WMH. A study looking at WMH development on a cating hemodynamic impairment in the pathogenesis of play of factors.

In addition, a recent imaging study has shown that disruption of the blood–brain barrier may be associated with WMH and reductions in CVR; however, this study is limited in its cross-sectional design and comparison of MRI metrics between different subjects. Another possibility is that increased leakage of the blood–brain barrier in NAWM combines synergistically with chronic hemodynamic impairment to precipitate WMH. Reductions in CVR may therefore result from a complex interplay of factors.

Our findings are also consistent with studies implicating hemodynamic impairment in the pathogenesis of WMH. A study looking at WMH development on a smaller time found hallmarks of acute infarction in de novo WMH. It is possible that the reduced CVR in the NAWM makes this particular region prone to acute infarction. However, it remains to be determined whether acute infarcts are more likely to develop in areas with impaired CVR. One mechanism that explains how impaired CVR and infarction could lead to the development of WMH is that cerebral arteriolosclerosis, which includes elements of microatheroma, lipohyalinosis, and fibrinoid necrosis, may develop with age.

However, reduction in CVR does not necessarily indicate impaired cerebral blood flow, and may also be a consequence of increased impedance to the perivascular lymphatic drainage of interstitial fluid from the white matter. In addition, a recent imaging study has shown that disruption of the blood–brain barrier may be associated with WMH and reductions in CVR; however, this study is limited in its cross-sectional design and comparison of MRI metrics between different subjects. Another possibility is that increased leakage of the blood–brain barrier in NAWM combines synergistically with chronic hemodynamic impairment to precipitate WMH. Reductions in CVR may therefore result from a complex interplay of factors.

Our findings are also consistent with studies implicating hemodynamic impairment in the pathogenesis of WMH. A study looking at WMH development on a smaller time found hallmarks of acute infarction in de novo WMH. It is possible that the reduced CVR in the NAWM makes this particular region prone to acute infarction. However, it remains to be determined whether acute infarcts are more likely to develop in areas with impaired CVR. One mechanism that explains how impaired CVR and infarction could lead to the development of WMH is that cerebral arteriolosclerosis, which includes elements of microatheroma, lipohyalinosis, and fibrinoid necrosis, may develop with age. These changes could lead to microturbulent flow, reduce the elasticity of vessels, and result in further impairment of CVR as well as increased risk of acute infarction. Impaired CVR could also stem from endothelial dysfunction. Mechanical factors such as hypertension result in damaged endothelium, which allows plasma proteins to leak into the vessel wall. Also, increased arterial pulsation related to hypertension can cause mechanical damage to veins and result in periventricular venous collagenosis. This results in intramural thickening, narrowing of the venous lumen, and reduced blood flow, and further exacerbates ischemic conditions. Venous collagenesis, acute infarction, and impaired CVR may all be aggravating factors leading to white matter tissue damage and development of WMH.

We observed a mean WMH progression rate of 0.66ml/yr, consistent with the range of progression rates found in previous studies. This progression rate was lower than expected, because a key risk factor for WMH progression is baseline WMH volume, which in our cohort was 19.3ml/subject. In their longitudinal studies of community-dwelling elderly subjects with no identifiable neurological disease, Taylor et al found a baseline WMH volume of 4.91 (7.01) ml/subject (mean age = 69.1 years) and Whitman et al found a baseline WMH volume of 3.1 (2.5) ml/subject with corresponding progression rates of 0.76ml/yr and 0.28ml/yr, respectively. In contrast, Sachdev et al found a much higher progression rate of 2.17ml/yr, with a decrease in WMH volume in 8 of 51 subjects, whereas we found a decrease in only 2 of 45 subjects. One explanation for such differences may be the differences in obliquity of the imaging plane between baseline and follow-up scans. In our study, we relied on multiple sequences with no interslice gap and automated coregistration of FLAIR, multiecho T2, PD, and conventional T2-weighted images to account for any differences in WMH volume on follow-up scans.

Limitations

Our study is limited by a relatively small sample size, which may influence the statistical power and predictive value of our prospective investigation of de novo WMH. However, a post hoc power calculation given the observed effect size between de novo WMH and contralateral NAWM CVR comparisons demonstrated that our study was adequately powered for this comparison. Another limitation is that de novo lesions represent very small tissue volumes and the metrics assessed in these regions are prone to image artifacts and to partial volume effects. These effects may influence the reliability of our measurements within de novo WMH. As well, we included only subjects with moderate–severe WMH at baseline, and therefore did not evaluate whether early/mild WMH development is...
preceded by CVR impairment. Because the strongest predictor of disease progression is baseline lesion volume, future studies evaluating early changes (from normal structural brain imaging to mild WMH) would likely require a larger sample size and longer follow-up interval to depict disease progression. Our study is also limited by the use of the BOLD signal as a surrogate for blood flow. However, we have previously validated our CVR methodology against measurements of cerebral blood flow obtained with arterial spin labeling in healthy controls and in patients with steno-occlusive disease.

One strength of our study is our ability to accurately control P_{ETCO_2} and P_{ETO_2} independently of each other and of the subject's breathing pattern and minute ventilation. This ability enables us to deliver a standardized vasodilatory stimulus to all subjects. Other methods of administering a stimulus such as breath-holding or administering a fixed inspired concentration of CO2 and O2 (eg, "carbogen") result in considerably greater test-to-test (and subject-to-subject) variation in arterial blood gas concentrations, the actual vasoactive stimuli. A sub-maximal stimulus may result in inaccurate CVR values, as recently described. Our methodology reliably produced a robust vasodilatory stimulus (ie, 10mmHg change in P_{ETCO_2}), increasing confidence that the observed decrease in CVR represents a true hemodynamic impairment.

Conclusion

Knowledge of the sequence of events underlying the evolution of WMH has important implications for understanding lesion pathogenesis and for targeting therapeutic interventions. Our findings show that areas of NAWM that develop WMH over time have reduced CVR compared to areas of NAWM that do not. This supports the hypothesized role of chronic hemodynamic impairment in the pathogenesis of WMH.

Acknowledgment

This project was supported by the Canadian Stroke Network, Ontario Research Fund (RE 02-002), and Alternative Funding Plan for the Academic Health Sciences Centres of Ontario Innovation Fund (K.S., A.P.C., J.P., J.C., O.S., J.D., D.M.M., J.A.F., S.E.B., D.J.M.). The Sunnybrook brain laboratory received support from the Heart and Stroke Foundation Canadian Partnership for Stroke Recovery and LC Campbell Foundation (S.E.B.).

We thank the TWH and SHSC RespirAct technologists, A. Battisti-Charbonney and D. Pham, as well as the MRI technologists, K. Ta and E. Hlasny; D. Crane (MacIntosh laboratory manager) and A. Ganda (psychometrist/research coordinator) for enabling the Sunnybrook data acquisition, which required availability after hours on weekends; A. McNeely and C. Berezuk, Sunnybrook brain laboratory imaging analysts, for identifying areas of WMH and lacunas for the Sunnybrook data set; and C. Scott, Sunnybrook brain laboratory manager, for facilitating training and analysis using the Lesion Explorer pipeline.

Author Contributions

The study was conceived and designed by K.S., A.P.C., D.M.M., J.D., J.A.F., S.E.B., and D.J.M.; K.S. and O.S. contributed to data acquisition; all authors contributed to data analysis and interpretation; K.S., J.C., A.P.C., and J.D. drafted the manuscript and figures.

Potential Conflicts of Interest

J.A.F and D.J.M. are coinventors of the RespirAct, a device used in this study. J.D., J.A.F., and D.J.M. hold shares in Thornhill Research, a University of Toronto/University Health Network–related company that provides the RespirAct, and will receive royalties should the RespirAct become a commercial product.

References

44. Xiong YY, Mok V. Age-related white matter changes. J Aging Res 2011;2011:617927.

